

Describing location on a map

- PLSS = Township, Section, Range
- Latitude and Longitude (Geographic coordinate system)
- UTM: Universal Transverse Mercator
- MGRS: Military Grid Reference System
- USNG: US National Grid
- UPS: Universal Polar Stereographic
- Ordinance Survey (GB) Grid
- State Plane Feet
- etc....

Map Grids

Sections (1 mile squares) Secfions (1 mile squarres)

Maine

Variant PLSS used in sparsely populated areas in northern Maine, Multiple different baselines for the grids, sometimes several per county. Some unorganized townships are known by their Township/Range and baseline rather than name.

T6R9 WLSS
T1R2 WBKP

Map Grids

Latitude

North

South

Longitude

West
East

Latitude and Longitude

$40^{\circ} 07^{\prime} 11^{\prime \prime} \mathrm{N} 75^{\circ} 13^{\prime} 58^{\prime \prime} \mathrm{W}$

Map Grids

(c) (\%) 9

Transverse Mercator Projection

Project the globe onto a cylinder wrapped pole to pole. Unroll the cylinder into a flat map. The line where the cylinder touches the globe has the least distortion, the further you move East or West of that line, the greater the distortion. UTM: Repeat 60 times.

UTM Zones 6° wide, numbered 1 to 60

UTM Zone Letters (Latitude bands)

15U

18U 19U

18T 19T

$$
15 \mathrm{~S}
$$

18S 19 S

13
14 15R 16 17 18R 19R
(CC) ©

Latitude Band Letters

- 8 degree tall bands (except for X)
- Starts with C at 80 to 72 degrees south.
- C-M, southern hemisphere
- N-X, Northern Hemisphere
- (N is the first zone north of the equator)
- No O or I (can be confused with 0 and 1)
- A,B South of 80 degrees south (UPS).
- Y, Z, North of 84 degrees north (UPS).

Grid Zone Designator

Grid Zone Designation 18S

Easting Meters into zone

 0
 500000
 18 S

Northing
 Meters North of the Equator

In the southern hemisphere: meters North of an arbitrary point 10,000,00 meters

Putting it all together

19T 03550004612500

Zone Band Easting Northing
Grid Zone 19T
(c) $\mathrm{CiP}_{\mathrm{EY}}^{\mathrm{O}}$

Grid North and True North

Easting
Zones narrow

276,224

$18 U^{723,776}$

 18T18 S

18R

500,000

Easting of 0 isn't a real place

18Q
18P
$18 \mathrm{~N} \quad 833,979$

Grids at a zone boundary

${ }^{07} 46$

Grid North $1^{\circ} 56^{\prime} \mathrm{E}$

What about the poles?

Universal Polar Stereographic

Special cases for places you aren't very likely to go.

UTM grid doesn't work well at the poles

UTM / UPS MGRS use UPS

 for the poles
South of 80 degrees S

Also, for Svalbard and SW Norway: MGRS 31V,32V,31X,33X,35X,37X are non-standard in size.

Map Grids

MGRS

- Divides grid zones into 100,000 meter squares
- Drops the first two digits of easting and northing

18T VJ 8026040830
 Easting Northing
 Grid Zone 19T

US National Grid

- FGDC standard: FGDC-STD-011-2001
- http://www.fgdc.gov/usng

18T VJ 8026040830 VJ 8026040830 8026040830 80264083

"USNG coordinates shall be identical to the MGRS numbering scheme over all areas of the United States including outlying territories and possessions."
USNG not defined for N of $84^{\circ} \mathrm{N}$, or S of $80^{\circ} \mathrm{S}$ (UTM and USNG grids differ from MGRS in Svalbard and SW Norway)

US National Grid: Simplifying

-18T VJ 8026040830

- VJ 8026040830
- Leave off grid zone
- 8026040830
- Leave off grid zone and grid square
-18T VJ 802408
- Leave off some numbers (leave off $2=100 \mathrm{~m}$ square)
- 802408
- Leave off grid zone, grid square, and some numbers

U.S. National Grid

100,000-m Square ID

Grid Zone Designation 19 T

19T BH 992088

US Topo: Grid Zone and Square ID

U.S. National Grid
$100,000 \cdot \mathrm{~m}$ Square ID
YN
Grid Zone Designation 18 T

U.S. National Grid
$100,000-\mathrm{m}$ Square ID ${ }^{3} 00$ $\mathrm{BH} \mid \mathrm{CH}$ Grid Zone Designation 19 T${ }^{2}$

U.S. National Grid
$100,000-\mathrm{m}$ Square ID
${ }^{7} \mathrm{OD}$
$\frac{\mathrm{XN}}{} \mathrm{YN}^{\mathrm{YM}}{ }^{\mathrm{YM}}{ }^{47} 00$
Grid Zone Designation
18 T

Produced by the United States Geological Survey in cooperation with Massachusetts Department of Public Works

Control by USGS, NOS/NOAA, and Commonwealth of Massachusetts agencies
Compiled by photogrammetric methods from aerial photographs taken 1980. Field checked 1981. Map edited 1988 Supersedes Athol and Templeton 1:25,000-scale maps dated 1970
Projection and 1000-meter grid, zone 18
Universal Transverse Mercator
10,000 -foot grid ticks based on Massachusetts coordinate system, mainland zone
1927 North American Datum
To place on the predicted North American Datum 1983, move the projection lines 5 meters south and 39 meters west as shown by dashed corner ticks There may be private inholdings within the boundaries of the National or State reservations shown on this map
Projection and 1000-meter grid, zone 18 Universal Transverse Mercator

USNG

U.S. National Grid

100,000-m Square ID

${ }^{3} 00$
$\mathrm{BH} \mid \mathrm{CH}$

992089 BH 992089
 19Т BH 992089

Grid Zone Designation 19T

USNG 10 meter square 80254085

 18T VK 80254085 UTM: 18T 04802504440850" Zone 18T Square VK Easting 8025 Northing 4085

Split into Easting and Northing: 80254085 Split into big numbers and rest: 80 25, 4085
Add zeroes to make rest 3 digits (meters): 80 250, 40850 Find the $\mathbf{8 0}$ Easting line. Go 250 meters further East.
«Find the 40 Northing line. Go 850 meters further North.

US National Grid Describing a 10 meter square

Local:
Regional: BH 99250895
99250895
Global: 19T BH 99250895
For GPS: 19T BH 9925008950

US National Grid Describing a 1 meter square

Local:
9925308956
Regional:
BH 9925308956
Global:
19T
BH 9925308956
For GPS: 19T BH 9925308956

US National Grid Training Map

Which Is Which?

(1) 19 T 03550004612500
(2) T2S R4W S33 NW¼
(3) BH 99250895
(4) 40.1197 N 75.2328 W
(5) 19T BH 9925308956
(6) $40^{\circ} 07{ }^{\prime} 11$ "N $75^{\circ} 13^{\prime} 588^{\prime \prime} \mathrm{W}$

Which Coordinate System do I use?

- MA Land SAR: USNG with WGS84.
- NSARC Georeferencing Matrix:
- Land SAR Responder
- USNG Primary, Lat/Long Secondary
- Land SAR coordination with Incident Command
- USNG Primary, Lat/Long Secondary
- Land SAR Responder with Aeronautical SAR
- USNG Primary, Lat/Long Secondary
${ }^{47} 10$

${ }^{47} 09$

Repeats of YN 0035009250

15 T YN 0035009250

YN 0035009250 Repeats about every 1000 miles

15R YN 00335009250

21RYN 0035009250

18R YN 0035009250

US National Grid Local coordinates

100 meter grid square: 992089

 10 meter grid square: 99250896 1 meter grid square: 992530896699250896

Easting Northing

Ready to copy location?

87440959

Selkirk
00350925

18T WN
18T XN

Schermerhorn
Island

Poplar Island
${ }^{06} 01$

Castleto ${ }^{47} 08$

Sanity Check

00350925

18T WN

18T XN
18T YN

UTM Conventionally:

19 Tango
0287367 Break
4709474

USNG as:

19 Tango
Bravo Hotel
8736709474

or

87450959

42 Degrees 30 Minutes
30 decimal 7

Seconds

 North71 Degrees
35 Minutes

16 decimal 2
Seconds
West

US National Grid Training Map

Location

N 42 $30^{\prime} 30.7$ " W071³5'16.2"

 USNG 09594 UTM 4709474

Depot Rd

N $40^{\circ} 10^{\prime} 00.8^{\prime}$

 w075 ${ }^{\circ} 22^{\prime 31} 9$
Advantages and Disadvantages

Using a grid reader (romer)

$\left.\prod_{10}^{\|I\|}\right|_{9} \quad 8 \quad 7 \quad 6$

cale V6
c Data Committee
GDC-STD-011-2001)
A 20192
947136
gov/usng

س!!ו!!ew

- 0

44585232

SDMRT coordinates

- Everyone has identical maps.
- Communicate points on the map from measurements in inches on the map from the edge of the map (read in like Easting, read up like Northing, but in inches measured on the printed map.
- Maps must be exactly identical (they can't be copied in different resolutions or positions).

(c)(i)(0)

This presentation Copyright © 2017 Paul J. Morris Some Rights Reserved.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This material may be freely reproduced and used under the terms of the Creative Commons Attribution-ShareAlike License.

This presentation includes images that have been made available under CC-BY and CC-BY-SA licenses, and material from the public domain. Attributions are noted on individual slides. These contributions to the commons are very gratefully acknowledged.

