NEWSAR SAR Field Team Member: Unit 12: Map \& Compass.
March 3, 2020

Land Navigation IV Map and Compass

Compasses

Compasses

- Lensatic
- Can't set declination
- Orienteering/Baseplate \& Mirror

- Pocket Transit
- Too expensive - more than needed.

Compasses

- Protractor/Orienteering
- Can be used as a protractor to measure bearings on a map.

- Lensatic
- Need a separate protractor

- Pocket Transit
- Need a separate protractor

Lensatic Compass

© 2008 CC-BY Some rights reserved by The US Army (U.S. Army photo by Staff Sgt. Mike Pryor)

Angles

- Mill
- one mill is 1 meter at $1 \mathbf{k m}$
- There are 6400 mills to 360 degrees
- Degree
- one degree is 17.8 mills
- one degree error is about 18 meters in 1 km
- 5 degrees error is about 90 meters in 1 km

Baseplate/Orienteering Compass

Holding a baseplate compass

- Shoulders square to target.
- Hold at waist level.
- Look straight ahead at target.
- Look down at compass, adjust and read bearing.
- Navigating on a bearing: Move, looking at compass and target until you are square to the target.

Inclinometer
© © © ©

Geologist's pocket transit "Brunton"

(c) (i) (2)

Holding a compass

- Baseplate
- Waist level
- Lensatic
- To eye
- Waist level (folded flat)
- Mirror
- Eye level, away from face
- Waist level (folded flat)

Not next to metal objects...

- Compass needle orients to north in the local magnetic field.
- Nearby magnetic objects (vehicles, radios).
- Nearby metal objects (metal tables, rebar in reinforced concrete)
- Iron Ore deposits
- Local natural magnetic variation

Sighting and shooting a bearing

Foresight

Red end of compass needle in red shed

Sight to target

UTM GRID AND 1998 MAGNETIC NORTH dECLINATION AT CENTER OF SHEET

Declination \& Adjustable Compasses

- Ignore it (OK if near agonic line)
- Do math (Correct for declination)
- Everyone in the field works with magnetic north
- People at base do the math, communicate magnetic.
- Set declination on compass
- Everyone works with true north
- Mark magnetic north lines on map
- Everyone works with magnetic north

Bearing 110° Magnetic

(c) © (i)

UTM GRID AND 1998 MAGNETIC NORTH DECLINATION AT CENTER OF SHEET

Declination Adjustment

(c)

Declination Adjustment

Sanity check

DECINATION DIAGRAM

Is magnetic north west of true north?

(c) ${ }_{\text {Biv © }}^{80}$

Declination \& Lensatic Compasses

- Ignore it (OK if near agonic line)
- Do math (Correct for declination)
- Everyone in the field works with magnetic north
- People at base do the math
- Set declination on compass
- Everyone works with true north
- Mark magnetic north lines on map
- Everyone works with magnetic north

Do Math

- Map to compass - West, Add
- Bearing measured on map: 45 degrees (true)
- Declination 15 degrees west
- Map to compass: $45+15=60$ degrees (magnetic)
- Map to compass - West, Add
- Compass to map - West, Subtract
- Map to compass - East, Subtract
- Compass to map - East, Add

Who does the math?

- Everyone who is moving bearings to/from a map.
- Do math to convert between magnetic and true bearings and plots on map.
- Everyone in field works with magnetic bearings
- Radio transmissions are magnetic bearings.

Adding A Magnetic North Grid to a Map (Preparing a map for use with magnetic bearings)

What happens if you don't account for declination?

Align with the map grid lines

Ignore the magnetic needle

Back
 Bearing

$1,0, \frac{S}{5}$

Line and direction of travel

Sanity Check

Bearing

60°

Sanity Check

Bearing

240°

US National Grid Training Map

Triangulation

QUADRANGLE LOCATION

Orient map to north

- By Landmarks
- With Compass

(c)(i)(0)

This presentation Copyright © 2014-2020 Paul J. Morris Some Rights Reserved.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This material may be freely reproduced and used under the terms of the Creative Commons Attribution-ShareAlike License.

This presentation includes images that have been made available under CC-BY and CC-BY-SA licenses, and material from the public domain. Attributions are noted on individual slides. These contributions to the commons are very gratefully acknowledged.

